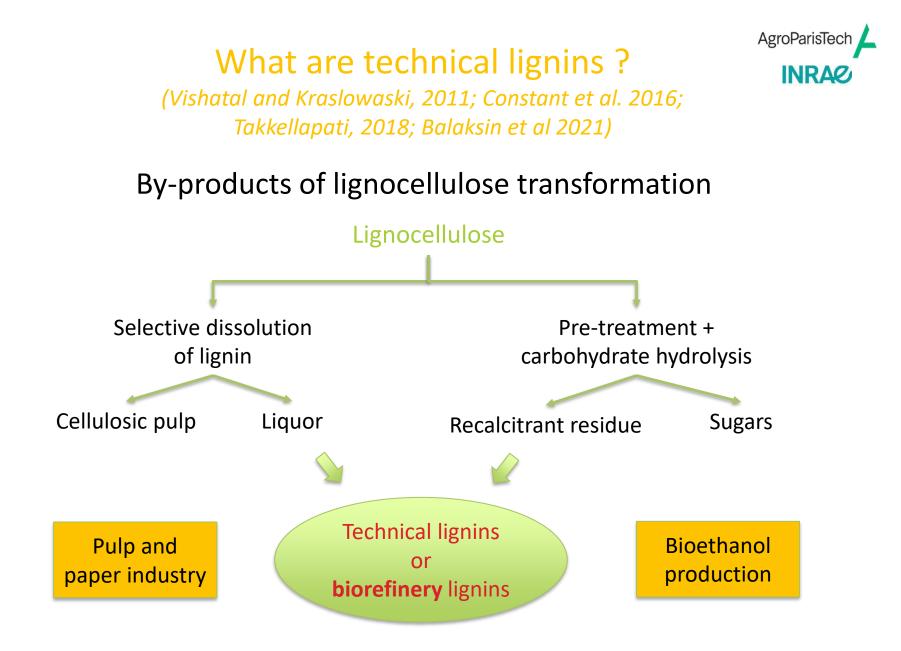


Lignin as bio-based raw material: structural investigation for a better valorization

Stéphanie BAUMBERGER, AgroParisTech

stephanie.baumberger@agroparistech.fr

Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France

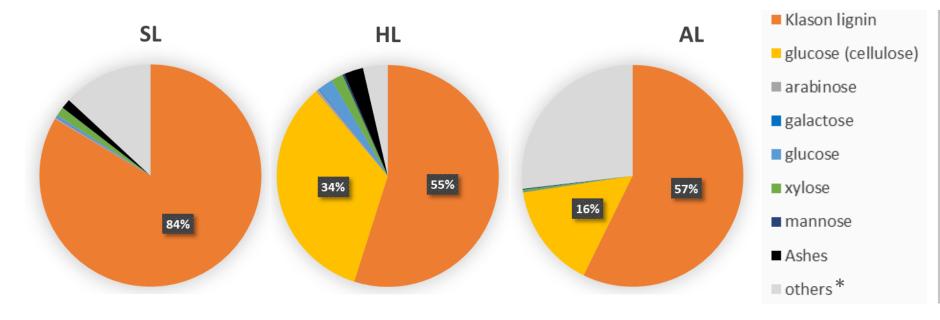


FinnCERES Flagship meeting, 14 October 2021, online

Outline

- Technical lignins and their markets
- A strategy to manage variability and exploit heterogeneity
- Activity of a lignin ethyl acetate extract

Heterogeneous and variable raw materials


- Composition of 3 types of biorefinery lignins (Zelcor project)
 - SL=grass soda lignin (Protobind 1000, Green value LLC)

Horizon 2020

European Union Funding

for Research & Innovation

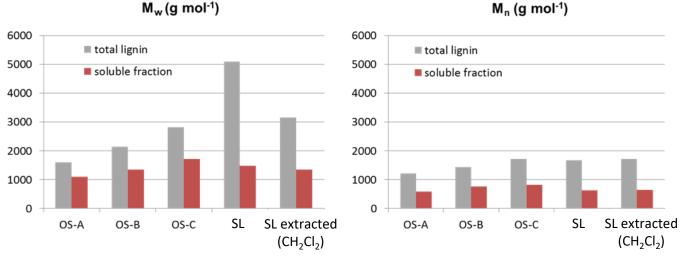
- HL=wheat straw residue from ethanol production (Futurol project)
- AL= softwood acidic lignin (Dawn technology)


* acid soluble lignin, uronic acids, extractives, proteins

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation program under grant agreement No 720303

ZELCOK Bio-based Industries

- Solubility of some technical lignins in aqueous and organic solvents
 - SL=soda lignin
 - HL=residue from ethanol production



Particularity of organosolv lignins

- High purity (up to 95% lignin content) ⇒ advantage for organic synthesis
- Solubility in common organic solvents (e.g. aqueous ethanol, acetone)
- Hydrophobicity (non soluble in water)
- Low molar masses (Mw < 5000 g.mol⁻¹) and polydispersity (~2) ⇒ possibility to get standardized extracts

Average molar masses of lignin samples and their ethanol extracts

(Aguié et al., 2015)

Interest and market for lignins

A 2% global annual market increase forecast

 Grand View Research survey (2020) - Lignin Market Size, Share & Trends Analysis Report By Product (Ligno-Sulphonates, Kraft, Organosolv), By Application (Macromolecule, Aromatic), By Region, And Segment Forecasts, 2020 – 2027

Existing applications for 20 years

Specialty cellulose	Lign
Construction materials	Conc
Cosmetics	Anim
Food	Dyes
Tablets	Batte
Textiles	Briqu
Filters	Minir
Paint/varnish	Soil d

Lignin
Concrete additive
Animal feed
Dyestuff
Batteries
Briquetting
Mining
Soil conditioning

Vanillin	Bioethanol
Food	Car care
Perfumes	Paint/varnish
Pharmaceuticals	Pharmaceutical industry
	Bio fuel

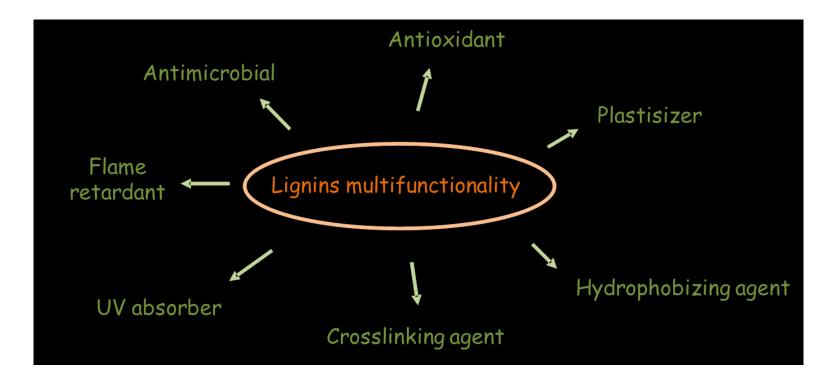
https://www.borregaard.com/Products-Solutions

Lignin in fuel oil

Dispersants

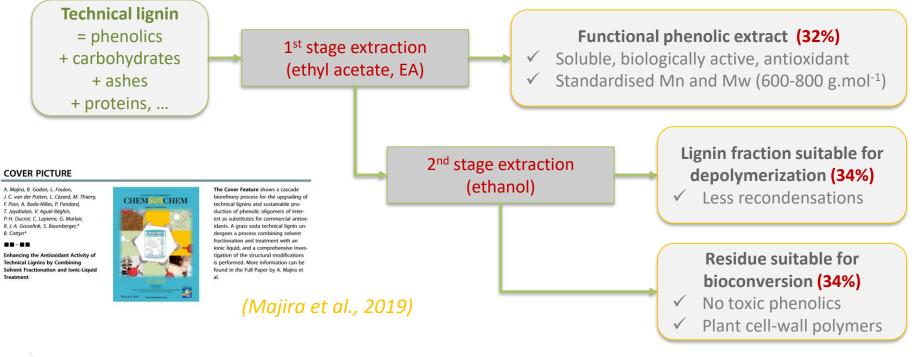
Kaolin/Water

Lignin to carbon fibres


- Other applications Binders
- Benzene/Phenols
- Activated carbon

INNVENTIA, "Biorefinery within the Pulp & Paper sector", 2009.

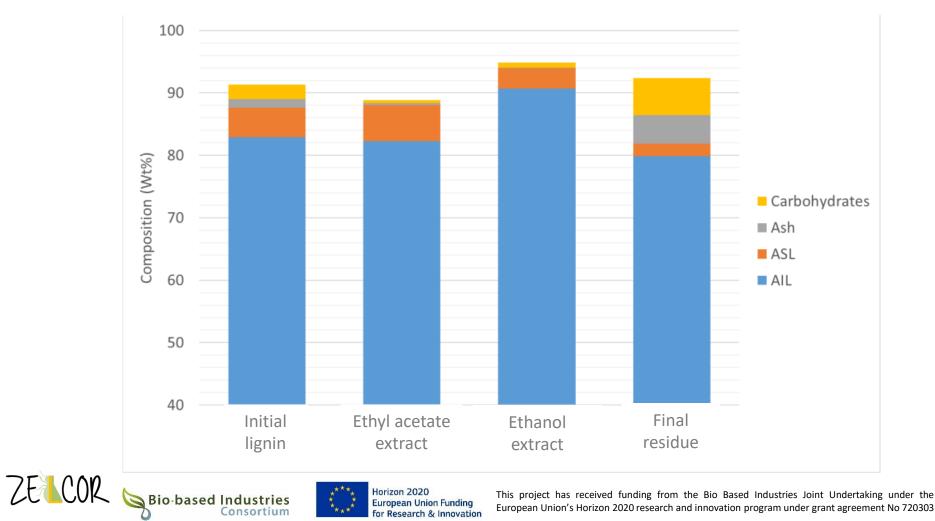
Multifunctionality still unexploited


 Potential applications as bio-based additives in plastic films for mulching, active packaging or biomedical materials
Bottleneck: need to characterize lignin structure and manage its variability

A strategy to manage variability and exploit heterogeneity

Integrated cascading approach

• Combined solvent extraction - depolymerization - bioconversion



Characterization of the fractions (soda lignin)

Characterization of the fractions (soda lignin)

- Molar mass distribution (Mn and Mw, g.mol⁻¹)
 - Ethyl acetate extract: Mn=1015; Mw=1260 ↔ LMM oligomers (DP=5-6)
 - Ethanol extract: Mn = 1000; $Mw = 2500 \leftrightarrow HMM$ oligomers (DP = 5-12)
 - Non soluble residue: Mw and Mn non determined \leftrightarrow polymers

Compound number	Compound name	c (mg g ⁻¹) ^a
		HPLC ^a
Major compounds		
1	vanillin	1.99 *
2	syringaldehyde	2.27
3	acetosyringone	4.76
4	<i>p</i> -coumaric acid	1.13
5	ferulic acid	1.09
Minor compounds		2.46
Total compounds	- 3	13.70

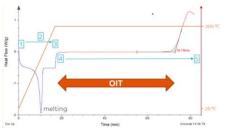
• Monomer composition of the initial lignin (extracted by EA)

^a HPLC-MS analysis of extracts (10 mg sample extracted by 1 mL water, PH 3, ambient T°C, 2 h under stirring) purified with speak cartridge using MeOH as eluent; determination based on *o*-coumaric acid internal standard; determination in duplicate (error < 3%).

Characterization of the fractions (soda lignin)

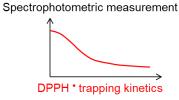
• Mapping of functional properties

Deliverable	D5.3 Mappin	g of functi	onal pro	perties		_	_	5	High funct	ionality		-	_					_		_	-	_	_	_								
			-						Madium	unctionality			-							-		-	-	-								
			-		-	1		-	INCUIDIN	ancoording		-	-						-	-			-	-	•		-					
			_					1	Low funct	onality									_													
		1 3																			- 6										3	
ample	Processing	Zelcor code	Fundi	onal proper	ty																		1		-	-		-				
				idant in PE			Antioxida	nt in solut	ion	Radical fo	rmation protection	Antimic	obial activ	ity		Anti-insect activity	Solubility	Opt	ical proper	ties										с»		
nit			OIT (m	in) Swt%	OIT (mir	n) 2 wt%	1/CE50 (n	n/mg)		ORAC	R05 reduction (K) Growth	iactor redu	ction (Log)	-	1/N-insect	wt%	UV	Extinction	coeff. (Lg ⁻¹	cm ⁻⁴) Film 1	ransmitt. (5									
												In PE		In cellulose	film	In PE	in THF/water															
					1		before IL treatment		after IL treatment*			S. Aureu	s E. Coli	S. Aureus E	. Coli				in aqu		ter 280 m	700 em										
odalignin	Asreceived	GV03	57.3		50.8	-	-	-	-	3313	30.50	10	0.11	<u>-</u>	-	0.24	300	diax	an etha	Inol	-	-	U	/B protection	DNAp	rotection	cytokin	eduction	sirtuinex	pression	anti-inflammation	spf activity
odalignin	Fractionated	GV03FB01	57.3		63.5		3.7	91	2.4	4416	30.50	3.74	0.16		_	0.24	100	_		4.9	2	56		30								
or a right of	racionated	GV03FB01 GV03FB02	BUL	-	03.5		3.7	91	6.7	3043	0	3./4	0.10			0.31	102	-		04.8	3			_								
-		GV03FB03	-	-	-		2.6	3.0	5.9	1394	0		-	-			99		35	04.0	2	-		-	-					-		
		GV03FB04	-	-	-	-	2.6	20	2.5	104	0		-		- (105	-	4.9	-	2			-	-					-		
		GV03FB05	_			-			-			-	-		_		12			-						-				-		
	Water insoluble	GV03FA01	-				25		1	-		-	1	2	1		-	2	4.2 2	23.5	0	87		-				-				
	Water soluble	GV03FA02					3.7											-														
	CLPs water soluble	GVOBOLP					3.3						1						2	M.6 3	16 1	90	6	_								
Nistillation residue	Dried	FU01	31		16.2					2		0	0			0.15	35									12 3				1	19 1	. 81
UMIN		AV01								664	52													100		69	-	53	6		-40	58
leferences	_		_	_	-				_		_		_		_			-	_	_	-	_	-	_		-			_	-		
oniferyl alcohol							45		-											-				-								
-coumaryl alcohol							4.0																									
erulic acid							4.8																									
ndulin		3	_		_		2.6				-				8	~	8			_	8											
					-		-	* BOAC extr	act	-		-						-					-									
5 High fund	tionality								action residue							3																
4			_																													
3 Medium	functionality		_																													
2																							_									
1 Low fund	tionality																															



Activity of the EA extract

- Antioxidant properties
 - In HDPE: Oxidation Induction Time (OIT, min)


Sample	OIT at 5 wt%	OIT at 2 wt%
PE - reference	1.1 m	in (0 wt%)
PE – HL	31.0 min	16.2 min
PE – initial SL	57.3 min	50.8 min
PE – EA extract	80.2 min	63.5 min

(Vachon et al., 2020)

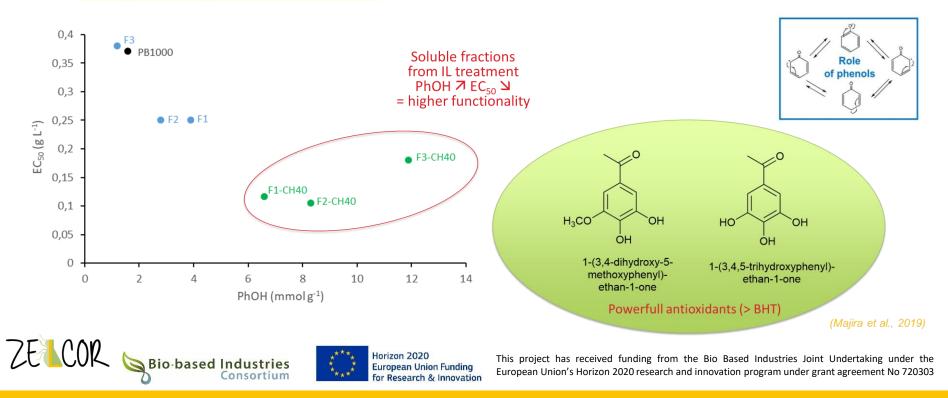
In solution: DPPH scavenging test (EC50, mg.mL⁻¹)

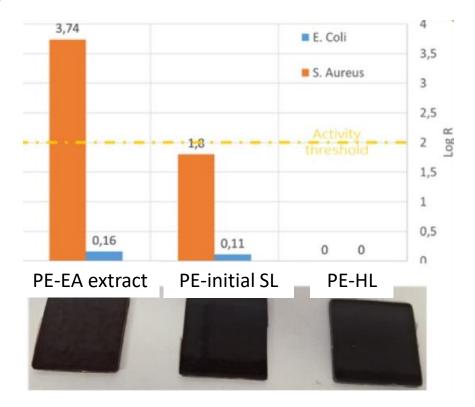
Sample	EC 50 (before IL treatment)	ΕС₅₀ (after IL treatment)
Intial SL	0.40	
EA extract	0.27	0.11

(Majira et al., 2019)

- Radical formation protection: Oxygen Radical Absorbance Capacity (ORAC)
 - AAPH test against a fluorophore

Sample	µmol Trolox eq. g ⁻¹	% Trolox activity
Initial SL	3313	83
EA extract	4116	103




• Correlation between phenol groups content and antioxidant properties

(2)		HL	Initial SL	EA extract
TOTAL OH	[mmol/kg]	5.7	5.8	6.2
CARBOXYLIC OH	[mmol/kg]	0.2	0.9	1.1
ALIPHATIC OH	[mmol/kg]	4.5	1.5	0.9
AROMATIC OH	[mmol/kg]	1.0	3.4	4.2

- Antimicrobial properties
 - In HDPE: Growth factor reduction (Log) after 24h incubation
 - Against S. Aureus (gram+)
 - Against E. Coli (gram-)

(Vachon et al., 2020)

- Anti-insect properties
 - In HDPE: invader test against Sitophylus oryzae •

Sample code	N-insects	Effect
HDPE-ref	4,2	No repellence (4-6)
HDPE – HL (2wt%)	6,7	Attractant (>6)
HDPE – Initial SL (2wt%)	4,6	No repellence (4-6)
HDPE – EA extract (2wt%)	3,2	Repellent (<4)

European Union Funding for Research & Innovation

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation program under grant agreement No 720303

(Vachon et al., 2020)

- Anti-insect properties
 - In HDPE: penetrator test against *Plodia Interpunctella*

Material	#small larvae	#larger larvae	#Pupals	#adults	Total
PE-ref	4,5 ± 1,2	2,4 ± 1,1	3,6±1,6	1,6 ± 1,2	$12,1 \pm 4,4$
PE-HL	0,6 ± 0,4	1,0 ± 0,7	1,5 ± 0,8	0	3,1 ± 1,6
PE-initial SL	3,9 ± 0,6	2,5 ± 0,6	0,8 ± 0,4	0	7,1 ± 1,0
PE-EA extract	0	0	0	0	0

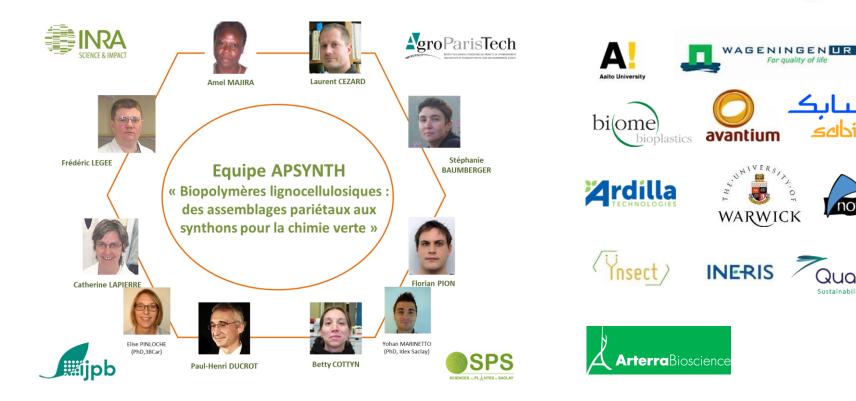
ZELCOR Bio-based Industries

(Vachon et al., 2020)

Conclusions

- Necessity to take into account the ethyl acetate extractible fraction for lignin valorization
 - Favor side-chain reaction during depolymerizing treatments
 - Negative impact on lignin bioconversion by insects
 - Source of valuable molecules (multifonctional properties)
- Industrial processes to be developed for the product of such a fraction
- Advantage of grass soda lignins
 - Cleavage of ester bonds with release of *p*-hydoxycinnamic acids
 - Selective dissolution of compounds with higher phenol contents

Acknowledgements



UNIVERSITÉ DE

UNIVERSITE PARIS-SACLAY

ZELCOR

- Zelcor project consortium)(
- Université de Versailles St-Quentin-en-Yvelines
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- UMR1318 IJPB Apsynth team and « Observatoire du végétal » X

nova

Sustainability count

References

- Aguié-Béghin, V., Foulon, L., Soto, P., Crônier, D., Corti, E., Legée, F., Cézard, L., Chabbert, B., Maillard, M.-N., Huijgen, W.J.J., Baumberger, S. **2015**. Use of food and packaging model matrices to investigate the antioxidant properties of biorefinery grass lignins. *J. Agric. Food Chem.* 63(45), 10022-10031.
- Majira, A., Godon, B., Foulon, L., van der Putten, J.-C., Cézard, L., Thierry, M., Pion, F., Bado-Nilles, Pandard, A.P., Jayabalan, T., Aguié-Béghin, V., Ducrot, P.-H. Lapierre, C., Marlair, G., Gosselink, R.J.A., Baumberger, S.*, Cottyn B.* **2019**. Enhancing the antioxidant activity of technical lignins by combining solvent fractionation and ionic liquid treatment. *Chem. Sus. Chem. 12*, 4799-4809. <u>https://doi.org/10.1002/cssc.201901916</u>
- Rivière, G.N., Pion, F., Farooq, M., Sipponen, M.H., Koivula, H., Jayabalan, T., Pandard, P., Marlair, G., Liao, X., Baumberger, S., Österberg, M. **2021**. Toward waste valorization by converting bioethanol production residues into nanoparticles and nanocomposite films. *Sustain. Mat. Technol.* Vol 28. <u>https://doi.org/10.1016/j.susmat.2021.e00269</u>
- Vachon, J., Assad-Alkhateb, D., Baumberger, S., van Haveren, Gosselink, R.J.A., Monedero, M., Bermudez, J.M. 2020. Use of lignin as additive in polyethylene for food protection: insect repelling effect of an ethyl acetate phenolic extract. *Composites Part C: Open Access*. <u>https://doi.org/10.1016/j.jcomc.2020.100044</u>

All Zelcor publications in open acess at Zelcor publications

Thanks for your attention !