

Zero Waste Ligno-Cellulosic Bio-Refineries

Techno-economic evaluation and social impact assessment as tools for the feasibility decision of an integrated biorefinery

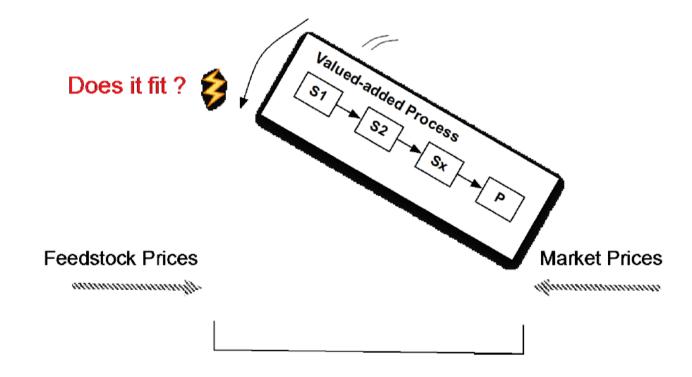
FLORIAN DIETRICH, CHRISTOPHER VOM BERG, ACHIM RASCHKA, NOVA-INSTITUT GMBH

Harmonisation with LCA

The TEE is an assessment that needs to be harmonised with the LCA

- methodology, system boundaries, goal and scope
- on production processes, units, allocation and reference products
- method on the data collection process

All these topics were discussed already in the presentation of Xun Liao, so in this presentation we concentrate on the specific TEE



Techno-Economic Evaluation

TEE – the fundamental question...

ZELCOR

The base of the techno-economic evaluation

- TEE assesses technological and economical aspects of a process/product
 - Different types depending on TRL (Technical Readiness Level)
 - Technological aspect:
 - **Process**
 - **Product**
 - **Economical aspect:**
 - **Costs**
 - Market Analysis & expected Benefits

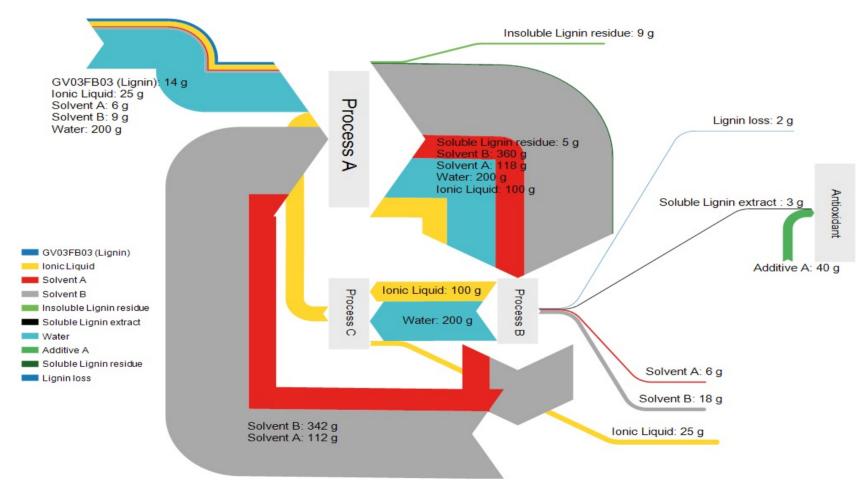
ZEICOR TRL: From lab to commercial scale noval Institute for Ecology and Innovation for Ecology and In

to

Technical Readiness Level

1 (lab scale)

10 (commercial scale)


- Technological Aspect: Process & Product
 - Example: Production of Antioxidants from Lignin
 - Process is visualised:
 - ★In a Sankey Diagram
 - In a table (energy & feedstock input)
 - Product is described:
 - In a pie chart (cost structure)
 - In a text (properties & application)
- Economical Aspect: Market Analysis

Technological Aspect: Process: Sankey Diagram

Technological Aspect: Process: Table

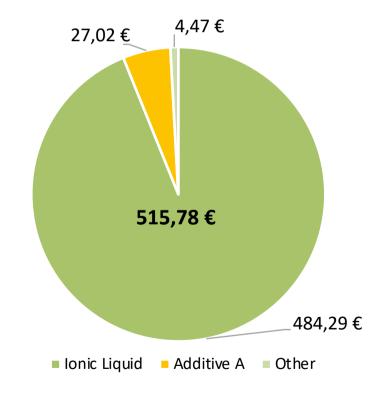
Amount of GV03 lignin used (kg)	Amount of antioxidants produced (kg)	Necessary energy (kWh)	Cost of electricity for non-household consumers	Energy costs for the process (€)
1	0.21	5.74	0.12	0.69

** Technological Aspect: Product

Properties:

- *Antioxidant
- Antimicrobial

- **Cosmetics**
- **Plastics**

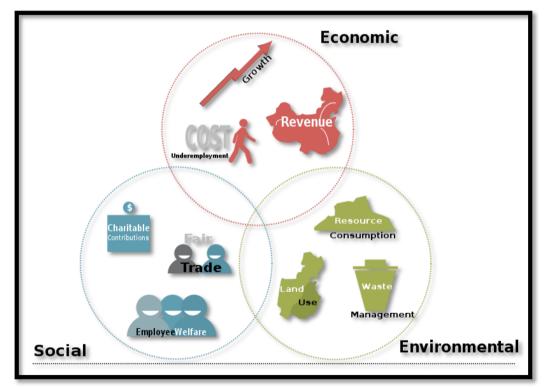


Economical Aspect: Costs for the production of 1 kg in optimised

lab scale

Cost structure

- Economical Aspect: Market Analysis & expected Benefits
 - Comparable to a large number of similar products
 - Depends on specific properties & application of the Zelcor product
 - OIT: Oxidation Induction Time (Measurement of the time of a material to be stable against oxidation in a calorimeter)
 - **Application: Research vs. Commercial
 - Price from comparable products ranges from 2,50 €/ kg to 800.000 € /kg what is the real market to adress?



Addressing the social impacts of ZELCOR

- Social aspects are an often overlooked aspect of sustainability, but forms together with environmental and economic aspects the Triple Bottom Line
- Basic idea is to consider the people and whether practices are fair and beneficial towards labour, the community and the region.
- In ZELCOR at the current TRL, a SWOT analysis was considered as feasible approach to capture relevant social impacts

Some areas of study of the Triple Bottom Line framework (source: Wikipedia)

SWOT

SWOT: tool to assess the performance of a project

	Success factors	Failure factors	
Internal	Strengths	Weaknesses	
External	Opportunities	Threats	

Structure of a SWOT matrix (Kretschmer, Schröter et al. 2013)

Things that Zelcor does well and separate it from other competitors	Things that Zelcor is lacking, where alternatives might do better
Elements in the external environment thatcan increase integrity and profitability of Zelcor	Elements in the external environment that can endanger the integrity and profitability of Zelcor

- In order to capture all relevant social impacts, the biorefinery concept, the products of ZELCOR and the project itself were investigated
 - Product level: guidance from S-LCA (social life cycle assessment)
 - Project & refinery level: guidance from SIA (social impact assessment)

DELCOR Overview of indicative social topics

Stakeholder categories	Subcategories	
Stakeholder "worker"	Freedom of Association and Collective Bargaining Child Labour Fair Salary Working Hours Forced Labour Equal opportunities/Discrimination Health and Safety Social Benefits/Social Security	
Stakeholder "consumer"	Health & Safety Feedback Mechanism Consumer Privacy Transparency End of life responsibility	
Stakeholder "local community"	Access to material resources Access to immaterial resources Delocalization and Migration Cultural Heritage Safe & healthy living conditions Respect of indigenous rights Community engagement Local employment Secure living conditions	
Stakeholder "society"	Public commitments to sustainability issues Contribution to economic development Prevention & mitigation of armed conflicts Technology development Corruption	
Value chain actors* not including consumers	Fair competition Promoting social responsibility Supplier relationships Respect of intellectual property rights	

BOX 2. Indicative thematic sections for an SIA

- 1. Regulatory framework (relevant international standards, national/regional legislation, sector specific legislation, customary law)
- 2. Administrative divisions and governance structure (national, regional, local levels of governance, international relations)
- 3. Population/demographics (gender/age/ethnicity, migration trends, religion, vulnerable groups)
- 4. Economy (employment, key sectors, business environment, financial services institutions, labour rights/working conditions, informal livelihoods, income, poverty/inequality)
- 5. Infrastructure (utilities, electricity, telecommunications, waste management, housing, transport infrastructure, markets/trade links, recreational facilities)
- 6. Community health, safety and security (health of population, mortality rates, health services, water/sanitation, road safety, fire services, disaster management services, police/security services, access to justice)
- 7. Education (literacy, education levels by gender, education and training institutions/services)
- 8. Social problems (crime, alcohol/drugs, prostitution, child/forced labour, employment inequalities, social tensions and conflict)
- 9. Land tenure and use (types of land and natural resource use, water use and availability, private/customary forms of use and ownership, types of agriculture/livestock ownership)
- 10. Cultural heritage (archaeological finds, indigenous sacred sites, historical buildings)
- 11. Civil society (trust, civic involvement, press freedom, freedom of association, civil society activism, trade unions, mass media, social media, indigenous rights groups, environmental groups, non-governmental community support organisations)

Indicative list of topics for an SLCA (UNEP, 2009) and for an SIA (Wilson, 2017)

Identifying SWOT for social impacts of ZELCOR

- Steps included
 - Literature study (on SIA, on SLCA, on other projects e.g. BIOCORE)
 - Project-internal workshop in Marseille
 - Expert interviews

Outcomes of the social impact SWOT workshop in Marseille

SWOT results on project / refinery level

STRENGTHS	WEAKNESSES
 Local employment Regional economic development Utilization of (local) by-products or waste streams Safer working conditions Skills and knowledge in region and Europe Collaboration between academics and industries 	 Infrastructure requirements Water demands Power / Energy demands Transport & storage Land use Biomass utilisation Sealed area Risk of failure / long way to commercialisation
OPPORTUNITIES	THREATS
 Integration into existing refinery / Retrofitting Integration with existing infrastructure Technology transfer Regional specialisation in lignin or waste valorisation (additionally education) Trend to investment / funding on novel environmental technologies Transformation of economy (from fossil to renewable) Regulation pushing lignin / insects 	 Infrastructure insufficient (waste collection / water / renewable energy / transport) Public rejection of biorefinery Waste & mass insects in neighbourhood Noise, smell, pollution Risk of invasive species Regulation inhibiting insect / lignin utilisation Lack of experience in insect rearing

ZELCOR SWOT results on product level

STRENGTHS	WEAKNESSES
 Innovative production routes / value chains No food competition Replacing fossil-based products Reduce dependence on resource imports Cascading use & circularity Health and safety Integrated value chains More sustainable (check with LCA) 	 High environmental impacts (check with LCA) Complex value chains Not competitive yet
OPPORTUNITIES	THREATS
 Demand for products from waste / insects Establishing new value chains from ionic liquids and nanoparticles Increased enforcement of circularity and waste stream utilisation Fossil feedstocks increase in price 	 Public rejection of products from waste / insects (also used as "insect mining") Unfair competition with fossil feedstocks Supplier dependency (only 1 humin producer) Uncertainties in e.g. waste management Product specific regulation

Detailed look: Local employment and ZELCOR rural/regional economic development (Strength)

- Local employment will be strengthened by the construction of a biorefinery
 - Installation of a new biorefinery (or retrofitting of an old one) will create employment opportunities for the local region and strengthen income generation for local farmers, adding to their job security
- Mean Biorefineries are likely to be constructed in rural areas, leading to more money circulating in the region and supporting economic development
 - Rural areas often struggle economically due to people moving into metropolitan areas
 - Additional revenues for feedstocks, additional revenues from biorefinery products
 - Make Additional taxes, higher income of locals (who often spend locally)

Thanks for your attention

Technology & Markets
Dipl.-Biol. Achim Raschka
+49 (0) 2233 48 14-51
achim.raschka@nova-institut.de

